Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene.

نویسندگان

  • Y Bai
  • P Hájek
  • A Chomyn
  • E Chan
  • B B Seo
  • A Matsuno-Yagi
  • T Yagi
  • G Attardi
چکیده

The gene for the single subunit, rotenone-insensitive, and flavone-sensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae (NDI1) can completely restore the NADH dehydrogenase activity in mutant human cells that lack the essential mitochondrial DNA (mtDNA)-encoded subunit ND4. In particular, the NDI1 gene was introduced into the nuclear genome of the human 143B.TK(-) cell line derivative C4T, which carries a homoplasmic frameshift mutation in the ND4 gene. Two transformants with a low or high level of expression of the exogenous gene were chosen for a detailed analysis. In these cells the corresponding protein is localized in mitochondria, its NADH-binding site faces the matrix compartment as in yeast mitochondria, and in perfect correlation with its abundance restores partially or fully NADH-dependent respiration that is rotenone-insensitive, flavone-sensitive, and antimycin A-sensitive. Thus the yeast enzyme has become coupled to the downstream portion of the human respiratory chain. Furthermore, the P:O ratio with malate/glutamate-dependent respiration in the transformants is approximately two-thirds of that of the wild-type 143B.TK(-) cells, as expected from the lack of proton pumping activity in the yeast enzyme. Finally, whereas the original mutant cell line C4T fails to grow in medium containing galactose instead of glucose, the high NDI1-expressing transformant has a fully restored capacity to grow in galactose medium. The present observations substantially expand the potential of the yeast NDI1 gene for the therapy of mitochondrial diseases involving complex I deficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xenotransplantation of Mitochondrial Electron Transfer Enzyme, Ndi1, in Myocardial Reperfusion Injury

A significant consequence of ischemia/reperfusion (I/R) is mitochondrial respiratory dysfunction, leading to energetic deficits and cellular toxicity from reactive oxygen species (ROS). Mammalian complex I, a NADH-quinone oxidoreductase enzyme, is a multiple subunit enzyme that oxidizes NADH and pumps protons across the inner membrane. Damage to complex I leads to superoxide production which fu...

متن کامل

Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells.

The NDI1 gene encoding rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria was cotransfected into the complex I-deficient Chinese hamster CCL16-B2 cells. Stable NDI1-transfected cells were obtained by screening with antibiotic G418. The NDI1 gene was shown to be expressed in the transfected cells. The expressed Ndi1 enzyme was recognized to be loca...

متن کامل

Protective Role of rAAV-NDI1, Serotype 5, in an Acute MPTP Mouse Parkinson's Model

Defects in mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) have been implicated in a number of acquired and hereditary diseases including Leigh's syndrome and more recently Parkinson's disease. A limited number of strategies have been attempted to repair the damaged complex I with little or no success. We have recently shown that the non-proton-pumping, internal NADH-...

متن کامل

Efficient selection and characterization of mutants of a human cell line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase.

The mitochondrial NADH dehydrogenase (complex I) in mammalian cells is a multimeric enzyme consisting of approximately 40 subunits, 7 of which are encoded in mitochondrial DNA (mtDNA). Very little is known about the function of these mtDNA-encoded subunits. In this paper, we describe the efficient isolation from a human cell line of mutants affected in any of these subunits. In the course of an...

متن کامل

Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation.

Previously, we have shown that a heteroplasmic mutation in mitochondrial DNA-encoded complex I ND5 subunit gene resulted in an enhanced tumorigenesis through increased resistance to apoptosis. Here we report that the tumorigenic phenotype associated with complex I dysfunction could be reversed by introducing a yeast NADH quinone oxidoreductase (NDI1) gene. The NDI1 mediated electron transfer fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 42  شماره 

صفحات  -

تاریخ انتشار 2001